

Module BRIDGE

3D CONSTRUCTION

1. Define file of monolith sections widths in ground floor
creating file Example1.smk

While roadway has widening we define widths from situation.

Polylines 1 to 6 must be drawn from left to right (in station direction)!

Polylines 1 to 3 must be drawn from left to right (in station direction)! Recommendet is drawing in horizontal direction, which will be used as template for pressstressed cable lines drawing in longitudinal profile.

3. Draw 3D cross sections and model of deck construction

Drawing cross axis in longitudinal section

3d drawing will be performed per segments according to cross section type: sections from 1-3 and 87-89, sections 4-5 and 85-86, and sections 6-84.

According to upper drawing we insert dates per particular sections.
At the same time are creating files of setting out points in sections Example1_1.m3d, Example1_2.m3d and Example1_3.m3d and files of console cross sections Example1_1.ppk, Example1_2.ppk and Example1_3.ppk.
Polyline (points 1 to 11) must be drawn in contraclockwise and closed (see picture on side 13)!

3.1.1 Drawing from section 1 to 3 and 87 to 89

Draw 3D cross sections and model of deck construction \times

3.1.2 Drawing from section 4 to 5 and 85 to 86 - equal as 3.1.1

3.1.3 Drawing from section 6 to 84

3d roadway level file

Current file *.o3d
C:VPrimeri ModulilExample 1 Example 1.03d
Replace file >>
Roadway file
Current file *.voz
C: VPrimeri ModulilExample1 |Example1.voz

Replace file >>

Monolith construction sections height file
Current file *.vmk
C: \Primeri ModulilExample 1 |Example1.vmk

Replace file >>

Monolith construction sections width file
Current file *.smk
C: Primeri ModulilExample 1 Example 1.smk

Replace file >>

[^0]

3.2 Draw as draft/sketch (horizontal) in local coordinate system

According to drawing on side 10 we insert dates for drawing per particular segments, simillar as in chapter 3.1, without drawing of model, defining axis number 2 and in name of layer adding 2. At the same time files of marking points in sections Example1_1_sketch.m3d, Example1_2_sketch.m3d and Example1_3_sketch.m3d are creating.

Example for sections 1-3 and 87-89:

Position of 1. cross axis

4. Draw marking points and polyline in section vertexes of deck construction

4.1 Draw in WCS coordinate system

From file Example1.m3d - added files Example1_1.m3d to Example1_3.m3d:

Draw marking points and polyline in section vertexes of deck construction

File typeMonolith sections - *.m3d Hollow sections - *.v3d		Colors Mark text
Section contour		
Outer Inner	O Outer O Inner	Select color >>
Izrisi		
Coordinate syste origin = WCS		Height text
\checkmark Draw points \square Draw marks \square	\checkmark Draw heights	Select color >>
Polyline\square Draw polyine in model		
		Polyline
2d 3d		
		Select color >>
\square Draw polyline horizontal 2d		
OK	Cancel	

4.2 Draw in local coordinate system and in 2d:

From file Example1_sketch.m3d - added Example1_1_sketch.m3d to Example1_3_sketch.m3d

Draw marking points and polyline in section vertexes of der	truction
File type Monolith sections - *.m3d Hollow sections - *.v3d	Colors Mark text
Section contour Outer Inner	Select color >>
Izrisi Coordinate syste origin $=$ WCS Draw points \square Draw marks Polyline Draw polyine in model Connect vertexes 2d 3d Draw polyline horizontal 2d	Height text Select color >> Polyline Select color >>
OK Cancel	

We can use drawing of longitudinal connection 2 d points $1,2,3,5,6,7,8,10,11$ in local coordinate system as ground floor sketch, that can be used by drawing of presstressed cable lines, especially in examples, where objects are not linear, or roadways with expansions

5. Draw sections vertexes marking points table of deck construction

5.1 Drawing in WCS coordinate system (from files Example1_1.m3d to Example1_3.m3d):

5.2 Drawing in local coordinate system (from files Example1_1_sketch.m3d to Example1_3_sketch.m3d):

7. Draw 3D cross sections and model of kerbs, levelling layers and filling layers

Kerb is equal on whole object, so we can create all segments at once.

7.1 Draw on left side

7.2 Draw on right side

Draw 3D cross sections and model of footways, filling layers and 3D polyline

Files
3d roadway level file
Current file *.03d
C: Primeri Modulii Example 1 Example 1.03d
Replace file \gg
Roadway file
Current file *.voz
C: Primeri Modulil Example 1 Example 1.voz
Replace file \gg

8. Draw 3D cross sections and model of footways, filling layers and 3D polyline

Footways are equall on whole object, so we can create all segments at once.

8.1 Draw on left side:

Draw 3D cross sections and model of footways, filling layers and 3D polyline

Files		
3d roadway level file		
Current file *.o3d		
Replace file >>		
Roadway file		
Current file *voz:		
Replace file >>		
Monolitnih sections widths files		
Current file *.smk		
Replace file >>		
Border wreaths section files		
Current file *.srv C: \Primeri ModulilExample 1 Example 1.srv		
Replace file >>		
Console slope file		
Current file *.ppk C:\|Primeri ModulilExample 1 Example1.ppk		
Replace file >>		
	Cancel	

File of footways coordinate vertexes is created - Example1_footway_left.m3d

8.2 Draw on right side:

Draw 3D cross sections and model of footways, filling layers and 3D polyline

File of footways coordinate vertexes is created - Example1_footway_right.m3d

9. Draw 3D cross sections and model of roadway layers

Layers are equall on whole object, so we can create all segments at once.

Draw 3D cross sections and model of roadway layers
 Files

3d roadway level file
Current file *.03d
Replace file >>
Roadway file
Current file *.voz
C: |Primeri ModulilExample 11Example 1.voz
Replace file >>
Console slope file
Current file *.ppk
C:|Primeri Moduli|Example 11Example 1.ppk
Replace file >>

Section area

© All
© All
Ofrom-to
Osingle
Draw 30 model

Layer over hidroisolation
\square Draw under console slope in draining area

Layer height - Hs [cm]: $\quad 7.0$
Distance between vertical alignment and top of layer - $\mathrm{dH}[\mathrm{cm}]$:

Distance from LEFT border to breaking point of LEFT console A [cm]:

Distance from RIGHT border to breaking point of RIGHT console $\mathrm{B}[\mathrm{cm}]$:

Layers

Sections:	ASPHALT_SECTIONS	3D model:	ASPHALT_MODEL
Colors			
Sections		3D model	
	Select color >>		Select color >>

2D CONSTRUCTION

1. Draw 2D cross sections of deck construction

Distance from LEFT border to breaking point of LEFT console A [cm]:
25.0 Distance from RIGHT border to breaking point of RIGHT console $\mathrm{B}[\mathrm{cm}]$:

2. Insert blocks in 2D cross sections of deck construction
2.1 Insert hidroisolation

Files
3d roadway level file
Current file *.o3d
C: Primeri ModulilExample1 IExample1.03d
Replace file \gg

Roadway file
Current file *,voz
C: Primeri Moduli IExample1 IExample1.voz
Replace file >>

Console slope file
Current file *.ppk
C: \Primeri ModulilExample1 IExample1.ppk
Replace file >>

Breaking points distances in construction cross sections \times

Distance from LEFT border to breaking point of LEFT console A [cm]:

Insert blocks in 2D cross sections of construction
\times
 Files
3d roadway level file
Current file *.03d
C:|Primeri ModuliliExample 1 1Example 1.03d
Replace file >>
Roadway file
Current file *.voz
C: |Primeri Moduli iExample 1 Example 1.voz
Replace file >>
Console slope file
Current file *.ppk
C:|Primeri ModulilExample 1 1Example 1.ppk

Replace file >>

Distance to top of layer in axis $[\mathrm{cm}]$: $\quad 8.0$ Draw under console oradient

Section type		Insertion side			
(1) Monolith	Ohollow	OLeft OAxis	()Right	Axis number:	1
Section type		Block type			
(Normal	Sketch	$\bigcirc 1 \bigcirc 2 \bigcirc_{3}$	$\bigcirc 4$	$\bigcirc 6 \bigcirc 7$	(9)

Breaking points distances in construction cross sections \times

Distance from LEFT border to breaking point of LEFT console A [cm]: Distance from RIGHT border to breaking point of RIGHT console B [cm]:

3. Draw longitudinal section in axis of monolite construction

If we do with upper procedure, we don't need to draw object longitudinal section in object axis, because this command is doing that.

Draw longitudinal section in axis of monolite construction
Files
3d roadway level file
Current file *.o3d C:VPrimeri ModulilExample 1 Example1.o3d Replace file >>
Monolith sections height file Current file *.vmk C:VPrimeri ModulilExample1lExample1.vmk Replace file >> Length scale:

Module BRIDGE

BRIDGE FENCES

1. Draw longitudinal section from 3d polyline and calculating positions of segments

Example for left footway fence:

2d longitudinal profile from 3d polyline is drawing:

In command line appears claculation:

```
Select 3D polyline - rail axis:
Drawing ground floor 3d polyline projection ... finished.
Pick starting point position of rail longitudinal section:
Drawing longitudinal rail section ... finished.
Rail length = 79.400 m. Layout Left -> Right: 0.700m + 13 x 6.000m + 0.700 m; <- Middle ->: 0.700 m + 13 x 6.000 m + 0.700 m
```

2. Segments positioning and polyline drawing in X-direction of longitudinal section

We divide fence in 3 parts:

3. Longitudinal draw of pipe vertical profiles
3.1 In 1. segment we define in single option position of dilatation position to right side:

In command line we define side of utorov drawing Left+Right for two first vertical profiles on 1. section:

```
Dilatation darwing side: Right
Pick BOTTOM point in axis of LEFT profile/Side of dilatation/End: S
Dilatation darwing side Left/Right/LeftRight: <R>LR
```

Dilatation darwing side: Left+Right

3.2 Drawing multiple profiles-2. section; first profile is with dilatation, next two are without dilatation and so on to next to last:

3.3 Drawing multiple profiles - 3. section; first profile is with dilatation, next is without dilatation:

After that we copy last profile in last poyline vertex.

4. Longitudinal draw of grips

4.1 In 1. section are grips without dilatations:


```
Draw dilatation LEFT: NO
Pick segment LEFT point/Dilatation/None dilatation/Position number/End:
Draw dilatation RIGHT: NO
Pick segment RIGHT point/Dilatation/None dilatation:
Draw dilatation LEFT: NO
Pick segment LEFT point/Dilatation/None dilatation/Position number/End: p
Position number of HORIZONTAL profiles <2>: 3
Draw dilatation LEFT: NO
Pick segment LEFT point/Dilatation/None dilatation/Position number/End:
Draw dilatation RIGHT: NO
Pick segment RIGHT point/Dilatation/None dilatation:
Draw dilatation LEFT: NO
Pick segment LEFT point/Dilatation/None dilatation/Position number/End: e
```


4.2 In 2. and 3. section are grip dilatations on right side at every 6.00 m , first dilatation is in first profile:

5. Longitudinal draw of horizontal profiles
5.1 In 1. section are profiles without dilatations:


```
Pick segment LEFT point/Position number/End: p
Position number of HORIZONTAL profiles <8>: 6
Pick segment LEFT point/Position number/End:
Pick segment RIGHT point:
Vertical distance from 1. AXIS of HORIZONTAL profile in cm <18.000>/eXit:
Vertical distance from 2. AXIS of HORIZONTAL profile in cm <18.000>/eXit: x
Pick segment LEFT point/Position number/End: p
Position number of HORIZONTAL profiles <6>: 7
Pick segment LEFT point/Position number/End:
Pick segment RIGHT point:
Vertical distance from 2. AXIS of HORIZONTAL profile in cm <18.000>/eXit:
Vertical distance from 3. AXIS of HORIZONTAL profile in cm <18.000>/eXit: x
Pick segment LEFT point/Position number/End: e
```


1.SECTION

5.2 $\ln 2$. section profile dilatations will be on right side at every 6.00 m , first dilatation is in first profile:
Horizontal profiles

Vertical profiles
A $=$ D/Fi [mm]: $\quad 60.3$
Horizontal profiles
B $=$ D/Fi [mm]: 60.3
Drawing option
Csingle \bigcirc Multiple

5.3 In 3. section profile dilatation will be on right side in first profile.

6. Longitudinal draw of ending profiles fillets

Explode first vertical and horizontal profile in 1. section:

Fillet of ending profiles

<Select 1. OUTER profile>/End:
Select 2. OUTER profile:
Select 1. INNER profile:
Select 2. INNER profile:
Select AXIS of 1 . profile:
Select AXIS of 2. profile: 0.15
<Select 1. OUTER profile>/End:
Select 2. OUTER profile:
Select 1. INNER profile:
Select 2. INNER profile:
Select AXIS of 1 . profile:
Select AXIS of 2. profile: 0.15
<Select 1. OUTER profile>/End:e

Change layer nameame of first vertical axis with command Define layers of bridge fences profiles axis:

```
Select LINES or ARCS:
Select entities:
Entities in set: 1
Select entities:
AXIS number < 1 >: }1
```


Repeat the same procedure in 3. section.- explode last vertical and horizontal profile, fillet ending profiles, erase excessive objects and cahange layer name of last vertical axis.
7. Longitudinal draw of intermediate vertical profiles

Draw profiles in 1. section:


```
Profiles will be drawn between current polyline vertexes.
Select polyline:
Bright openeing between INTERMEDIATE profiles in mm = <123.000>:
Bright openeing on start and end of segment = 103.3 mm.
Bright openeing on start and end of segment = 103.3 mm. Continue Yes/No/eXit <N>:y
Bright openeing on start and end of segment = 127.9 mm.
Bright openeing on start and end of segment = 127.9 mm. Continue Yes/No/eXitI <Y>:
```


Draw profiles in 2. section:

Intermediate vertical profiles

[^1]

Draw profiles in 3. section:

Intermediate vertical profiles

Head profile

$\mathrm{A}=\mathrm{D} / \mathrm{Fi}[\mathrm{mm}]:$	60.3
Intermediate profiles	
Drawing option	
Single	
B $=\mathrm{D} / \mathrm{Fi}$ [mm]:	16.0
Height $\mathrm{H} 1[\mathrm{~cm}]:$	21.0
Height H2 [cm]:	93.0
Position number:	12

Top and bottom borders OHorizontal Under angle

Colors
Axis
Select color \gg

Profiles

Select color \gg

CROSS SECTION

VIEW - DETAL


```
Profiles will be drawn between current polyline vertexes.
Select polyline:
Bright openeing between INTERMEDIATE profiles in mm = <123.000\rangle:
Bright openeing on start and end of segment = 127.9 mm.
Bright openeing on start and end of segment = 127.9 mm. Continue Yes/No/eXit <Y>:
Bright openeing on start and end of segment = 127.9 mm.
Bright openeing on start and end of segment = 127.9 mm. Continue Yes/No/eXit <Y>:
Bright openeing on start and end of segment = 103.3 mm.
Bright openeing on start and end of segment = 103.3 mm. Continue Yes/No/eXit <Y>:
```


8. Longitudinal draw of blocks

Draw block for anchor plate of vertical profiles in 1 . section with horizontal insertion:

And 2. and 3. section:

Longitudinal draw of blocks \times

Drawing option

SingleMultiple

Number of concurrently segments
© 1
2
○ 3

OK
Cancel

Move subsidiary lines - polylines to bottom border of filling layer:

9. Bridge fences dimension
9.1 Mark dimension

Dimension marks in 1. segment:

Dimension is between existing polyline vertexes! Select starting side of polyline:
Pick dimension line position:
Rail segments mark < RE >:
Number of 1. segment < 1 >:
Dimension between rail segments finished.

Dimension in 2. section:

Dimension on linear polyline X
Dimension option
Single
Multiple
Dimension type
Distances
Marks
Gradients
Dimension dH segments values
Number of simultaneous segments
1
2
3

Dimension side
Left
Right
O Horizontal

OK
Cancel

Dimension in 3. section:

Dimension on linear polyline

Dimension option
single
O Multiple
Dimension type
Distances
Marks
Gradients
\checkmark Dimension dH segments values
Number of simultaneous segments
1
$\bigcirc 2$
$\bigcirc 3$
Dimension side
Left
Right
O Horizontal

9.2 Distance dimension

Dimension distances between separate vertical profiles and than on the same sections as dimensions of marks:

1. section

2. and 3 . section

Dimension on linear polyline

Dimension type
(O) DistancesMarksGradients
\checkmark Dimension dH segments values
Number of simultaneous segments

Dimension sideLeft
Right
() Horizontal

OK Cancel

9.3 Gradient and dH values dimension

Dimension gradients and dH values between fence segments :

1. section

2. and 3. section

Dimension on linear polyline \times
Dimension option
\bigcirc
Single
() Multiple

Dimension type
Distances
Marks
OGradients
\square Dimension dH segments values
Number of simultaneous segments

$\bigcirc 1$
$\bigcirc 3$

Dimension side
Ceft
Right
Horizontal

OK
Cancel

Select every position separate:
Amount calculation of bridge rail profiles \times
Calculation type
Writting

WKitte dates to file	
	Cancel

```
< Select POSITION AXIS - line or arc for calculation >/select Length/select Blok/Writte dates/End:
Position number < 1 >:
SElect LINES on corresponding axis.
Select entities:
Opposite Corner:
Entities in set: 40
Select entities:
Weight g[kg/m1]: 1 = 6.819; 2 = 5.554; 3 = 4.636; 4 = 1.578; 5 = writte value
weight g[kg/m1] = < 1 >:
Position 1: Length = 1.170 m; g = 6.819; G = 7.977; Pcs. number = 40; Weight = 319.088 kg; Total weight = 319.129 kg.
< Select POSITION AXIS - line or arc for calculation >/select Length/select Blok/Writte dates/End:
Position number < 2 >:
SElect LINES on corresponding axis.
Select entities:
Opposite Corner:
Entities in set: 2
Select entities:
Weight g[kg/m1]: 1 = 6.819; 2 = 5.554; 3 = 4.636; 4 = 1.578; 5 = writte value
Weight g[kg/m1] = < 1 >: 2
Position 2: Length = 0.583 m; g = 5.554; G = 3.239; Pcs. number = 2; Weight = 6.442 kg; Total weight = 325.605 kg.
< Select POSITION AXIS - line or arc for calculation >/select Length/select Blok/Writte dates/End:'._osnap
```

11. Draw table of bridge fence profiles Example1.ogr

Element RE1-RE14			
Position	Wgt. [kg]	Pieces	Sum [kg]
1	7.98	40	319.13
2	3.24	4	12.95
3	11.11	2	22.23
4	0.70	13	9.04
5	10.61	2	21.22
6	10.61	35	371.28
7	11.06	2	22.13
8	11.06	24	265.39
9	10.75	13	139.78
10	0.88	13	11.45
11	1.03	4	4.11
12	4.17	2	8.33
13	1.47	515	755.78
Sum for 1 element		1962.82	
Sum for 1 elements		1962.82	

12. Ground floor and 3d drawing of vertical profiles

Copy and join longitudinal polyline between vertical profile distances. Copy axis of intermediate vertical profiles.

Select new polyline in longitudinal profile, with vertexes in vertical profiles distances:

Select polyline - 2d fence axis in ground floor:

Select blocks for 2d and 3d vertical profiles:

Select axis of intermediate vertical profile in longitudinal profile for layer, and then select all intermediate vertical profiles, for distance definition to draw in ground floor and 3d model and select corresponding 2d and 3d block:

Ground floor drawing

2d drawing - axonometry

3d drawing - axonometry

Copy 3d line of fence in vertical direction for 19.3 and 99 cm , from longitudinal profila transfer ending axis with fillets:

With command Utilitys -> Loft 2D polyline - profiles on 3D polyline, we draw 3d holle pipe profiles:

Loft 2D polyline - profiles on 3D polyline
Profile type
Monolith round
() Hollow round

Monolith optional
Hollow optional

13. Bridge fences dimension in ground floor

Dimension fence elements in ground floor - distances and marks, in the same procedure as in longitudinal profile:
For single distances between segments:

In 1, 2. and 3. section
Dimension on linear polyline $\quad \times$
Dimension option
Single
() Multiple

Dimension type

- Distances

Marks
Gradients
\checkmark Dimension dH segments values

Number of simultaneous segments
(-) 1
1
$\bigcirc 3$

Dimension side
(O) Left

Right
Horizontal

OK
Cancel

For 1 . section 2 segments at once and in 2 . and 3 . section 3 segments at once.

Modul BRIDGE

CABLE PRESSTRESSING

CABLE PRESSTRESSING

1. Define cable axis files in cross sections in draft/sketch ground floor and longitudinal section
1.1 Draw cross axis horizontal with command Civil -> Cross axis -> Draw cross axis.

1.2 Draw cable axis in draft/sketch ground floor and longitudinal section. (see examples in appendix 12)

Longitudinal section and ground floor

Longitudinal section

Ground floor

1.3 Define cable file Cable1.kal. Multiple cable drawing files must have the same cahracters to cable numbers in names! (Cable2.kal, Cable3.kal ...)

Define presstressing cable axis files in cross sections from ground floor and longitudinal section \times		
```Cross axis file Current file *.pro C: Primeri Modulil Example 1 1 Example 1.pro```		
Replace file >>		
Deltha stations [ m ]:		0.000
Fi cables [cm]:		10.8
Protecting concrete layer [cm]:		4.5
Delthafi [ cm ]:		3.2
OK	Cancel	

2. Draw cables in draft/sketch ground floor and longitudinal section

Multiple - longitudinal and ground floor cables


Block CABLE_HEAD_LEFT Block CABLE_HEAD_RIGHT


```
Selected cross section file: C:\Primeri Moduli\Example1\Example1.pro
Checking dates in file ... finished.
Select basic BLOCK for LEFT head:
Select basic BLOCK for RIGHT head:
Select polyline - TOP BORDER of construction longitudinal section:
Pick AXIS position in ground floor:
Starting cable files text <K>: Cable
STARTING cable number <1>:
ENDING cable number <1>: 10
File C:\Primeri Moduli\Example1\Cable1.kal not found.
Cable line file:
C:\Primeri Moduli\Example1\Cable1.kal.
Longitudinal section processing
Section processing in ground floor ... finished.
Pick table X0Y origin point of cable. 1:
Draw table of 1. cable ...
```

Longitudinal section and ground floor draft/sketch


Longitudinal section draft/sketch
Ground floor draft/sketch

3. Draw cables in real ground floor 2d or 3d

2d draw

Draw cable in real ground floor


```
Selected file *.o3d: C:\Primeri moduli\Example1\Example1.o3d
Selected file *.voz:C:\Primeri moduli\Example1\Example1.voz
checking dates in files ... finished.
Section checking ... finished.
Select basic BLOCK for LEFT head:
Select basic BLOCK for RIGHT head:
Starting text of cable files \langleK\rangle: CABLE
Number of STARTING cable <1>:
Number of ENDING cable <1>: 10
Cable line drawing file:C:\Primeri moduli\Example1\CABLE1.kal.
Section processing ... finished.
Draw 1. cable ... finished.
Cable line drawing file:C:\Primeri moduli\Example1\CABLE2.kal.
Section processing ... finished.
Draw 2. cable ... finished.
Cable line drawing file:C:\Primeri moduli\Example1\CABLE3.kal.
```



3d draw

Draw cable in real ground floor		Colors and blocks	
		Drawing option in ground floor	
Files Draw axis and cable Odraw axis Ono			
3d roadway level file		Colors	
Current file *.o3d		Cable axis	
C: \|Primeri modulil Example 1 Example 1.03d		Select color >>	
Replace file >>		Cables	
Roadway file		Select color >>	
Current file *.voz		Cable marks	
		Select color >>	
Replace file >>			
		Blocks	
Drawing option		On cable startpoint	
S Single Multiple	O2d	OHead Oclutch	Ancoring ONone
$\square$ Draw 3d Y -coordinates horizontal $\square$ Draw as sketch		On cable endpoint	
		OHead 〇clutch ○ancoring ONone	
Mark prefix:	$\square$ Writte suffix for side	Mark prefix:	$\square$ Draw suffix for side
OK	Cancel	OK	Cancel

```
Selected file *.o3d: C:\Primeri moduli\Example1\Example1.o3d
Selected file *.voz:C:\Primeri moduli\Example1\Example1.voz
Checking dates in files ... finished.
Section checking ... finished.
Select basic BLOCK for LEFT head:
Select basic BLOCK for RIGHT head:
Starting text of cable files <cable>:
Number of STARTING cable <1>:
Number of ENDING cable <10>:
Cable line drawing file:C:\Primeri moduli\Example1\cable1.kal.
Section processing ... finished.
Draw 1. cable ... finished.
```

Block CABLE_HEAD_LEFT_3D


Block CABLE_HEAD_RIGHT_3D


4. Draw cables in cross sections

Draw cables in cross sections


Files
3d roadway level file
Current file *.03d
C:|Primeri moduli|Example 1 |Example 1.03d

## Replace file $\gg$

Roadway file
Current file *.voz
C: |Primeri modulil|Example 1 |Example 1.voz
Replace file >>
Slope console file
Current file *.ppk
C:|Primeri modulilExample 1 IExample 1.ppk

## Replace file >>

Section type   Monolith	Ohollow	$\square$ Draw Y -coordinates horizontal	$\square$ Draw as sketch
Drawing optio	© Multiple		
Osingle		Axis number:	1
Distance from LEFT border to break point of LEFT console A [cm]:			25.0
Distance from RIGHT border to break point of RIGHT console B [cm] :			25.0

Draw cables in cross sections $\times$
$\square$
Mark prefix:

## $\square$ Writte suffix for side

Mark insertion side
OLeft $\bigcirc$ CenterRight $\bigcirc$ TopBottom

## Colors

$\square$
Cable marks
Select color $\gg$

OK

[^2]
5. Insert YOZ basis points in cross sections

6. Draw table of cable coordinates in cross sections

### 6.1 Left side




### 6.2 Right side

Draw table of cable coordinates in cross sections $\times$


7. Draw table of cable specifications

### 7.1 Left side

Draw table of cable specifications $\times$


### 7.2 Right side

Draw table of cable specifications $\times$

Drawing area 2d	(-) 3d
Cable position Left	$\bigcirc$ Axis Right
Textual dates	
Titele text:	Cable specifikation
Mark prefix:	

$\square$ Writte suffix for side
Cable type:
$19 \times 150 \mathrm{~mm} 2$

Cable weight [kg]:
Colors
Title text
Select color $\gg$
Text in lines
Select color $\gg$   Outer table lines   Select color $\ggg$   Inner table lines   Select color $\ggg$

OK

Cable specifikation							
Mark	pCS	TYPE	L [m]	Wght [kg]			
1	1	$19 \times 150 \mathrm{~mm} 2$	79.2	1797.8			
2	1	$19 \times 150 \mathrm{~mm} 2$	79.2	1797.8			
3	1	$19 \times 150 \mathrm{~mm} 2$	79.2	1797.8			
4	1	$19 \times 150 \mathrm{~mm} 2$	79.2	1797.8			
5	1	$19 \times 150 \mathrm{~mm} 2$	79.2	1797.8			
Sum						396.0	8989.0


[^0]:    Selected file .o3d: C:\Primeri Moduli\Example1\Example1.o3d Selected file .voz:C:\Primeri Moduli\Example1\Example1.voz Selected file .vmk: C:\Primeri Moduli\Example1\Example1.vmk Selected file .smk: C:\Primeri Moduli\Example1\Example1.smk Checking files ... finished.
    Select cross section CONTOUR:
    STARTING section number <85>: 6
    ENDING section number <86>: 84

[^1]:    Profiles will be drawn between current polyline vertexes.
    Select polyline:
    Bright openeing between INTERMEDIATE profiles in mm $=<123.000\rangle$ :
    Bright openeing on start and end of segment $=127.9 \mathrm{~mm}$.
    Bright openeing on start and end of segment $=127.9 \mathrm{~mm}$. Continue $\mathrm{Yes} / \mathrm{No} / \mathrm{eXit}\langle\mathrm{Y}\rangle$ :
    Bright openeing on start and end of segment $=127.9 \mathrm{~mm}$.
    Bright openeing on start and end of segment $=127.9 \mathrm{~mm}$. Continue Yes/No/eXit <Y>:

[^2]:    Selected file *.o3d: C:\Razno\!Projekti\Ponting\Nadvoz Ormož\OrmožENG.o3D Selected file *,voz:C:\Razno\!Projekti\Ponting\Nadvoz Ormož\Ormoženg.voz Selected file *.ppk: C:\Razno\!Projekti\Ponting\Nadvoz Ormož\OrmožENG.ppk Preverjanje PREREZOV... finished.
    Starting text of cable files <kabeleng>:
    Number of STARTING cable <1>:
    Number of ENDING cable <10>:
    Cable line drawing file:C:\Razno\!Projekti\Ponting\Nadvoz Ormož\kabeleng1.kal.
    Section processing ...
    Draw cable ... finished.

